Abstract

Abstract Management of the produced heat has been one of the challenges encountered in the oxidative coupling of methane (OCM) process. In this study, the influence of the thermal conductive tubular reactor on the total productivity and selectivity of OCM was investigated. The reactors were made from three different metal compounds: two stainless steel tubes and one gold-coated copper tube, and their impact on the operating conditions was compared. 5% Li/MgO was prepared as a catalyst for OCM and characterized by XRD, CO2-TPD, FTIR, and BET. In addition, the effect of reactor geometry on the oxidative coupling process was investigated experimentally in the single channel and multi-channel reactors with different hydraulic diameters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.