Abstract
This work presents a single- and dual-port fully integrated millimeter-wave ultra-broadband vector network analyzer. Both circuits, realized in a commercial 0.35-μm SiGe:C technology with an ft/fmax of 170/250 GHz, cover an octave frequency bandwidth between 50-100 GHz. The presented chips can be configured to measure complex scattering parameters of external devices or determine the permittivity of different materials using an integrated millimeter-wave dielectric sensor. Both devices are based on a heterodyne architecture that achieves a receiver dynamic range of 57-72.5 dB over the complete design frequency range. Two integrated frequency synthesizer modules are included in each chip that enable the generation of the required test and local-oscillator millimeter-wave signals. A measurement 3σ statistical phase error lower than 0.3 ° is achieved. Automated measurement of changes in the dielectric properties of different materials is demonstrated using the proposed systems. The single- and dual-port network analyzer chips have a current consumption of 600 and 700 mA, respectively, drawn from a single 3.3-V supply.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Microwave Theory and Techniques
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.