Abstract

This paper presents single and dual assist gas jet effects in the single-pass laser cutting of dry pine wood. The laser wood cutting process is influenced by the assisting gas jet(s) applied. Therefore, it is important to understand their roles in the removal of fumes and combusted materials from the cutting kerf. A computational fluid dynamic model is developed to investigate the effect of single and dual gas jets in the laser wood cutting process. In order to obtain a close approximation of the actual process, a three-dimensional model was considered. Results obtained in the simulations were compared with experimental data collected from a multifactor experiment analysing the laser cutting process of dry pine wood. A high brightness, 1 kW IPG single-mode, continuous-wave Ytterbium fibre laser was employed to cut cubic wood samples parallel to the wood fibre direction. It has been found that shear stresses produced by the gas jet(s) on the kerf walls have an important correlation with the yield and cut quality.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.