Abstract
Fine-scale heterogeneity of alluvial aquifers controls solute transport in groundwater at the scales relevant for practical applications: the architecture of sedimentary structures might create preferential flow paths (PFPs) or hydraulic barriers, which affect the breakthrough curves (BTCs). Objective of this paper was the assessment of the relevance of single- and dual-domain models for different heterogeneity patterns and scale lengths in alluvial sediments. Three case studies have been analysed with a classical single-domain model (SDM) and with three dual-domain models (DDMs): a dual-porosity model (DPorM) and two dual-permeability models (DPerM), which differ for the presence or the absence of solute exchange between the two domains. The first case study includes numerical tracer tests in metre-scale blocks of alluvial sediments; the second is a laboratory experiment of tracer injection in a decimetre-scale column of homogeneous sand; the third is a field tracer test performed at hectometre scale at the Cape Cod site. The relevance of the solute exchange in the DDMs is analysed with the characteristic advection and exchange times and with the Peclet and Damkohler numbers. The SDM is satisfactory for alluvial sediments with unstructured heterogeneity. The uncoupled DPerM is shown to be a better approach than the DPorM in sediments with PFPs; in this case, the coupled DPerM does not improve significantly the results of the uncoupled DPerM. A minor difference between the results of the three DDMs is observed for sediments in which the non-Fickian behaviour is not clearly determined by the presence of PFPs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.