Abstract

Single- and double-electron-capture processes occurring in the system of hydrogen ions colliding with alkaline-earth atoms, ${\mathrm{H}}^{+}+\mathrm{Mg}$, are investigated in a broad energy domain ranging from 0.25 to 180 keV. Total and state-selective cross sections are calculated using a two-active-electron semiclassical asymptotic-state close-coupling approach. Our results show the best overall agreement with experimental data, and possible reasons for observed discrepancies are discussed. Comparison of our cross sections with previous theoretical results further demonstrates the importance of electronic correlations between the magnesium valence electrons and the strong couplings between various important channels. Furthermore, our investigations suggest that the oscillatory structures observed in the double-electron-capture cross sections stem from complex coherence effects between double-electron capture, electron transfer to excited states, and transfer-excitation processes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.