Abstract

The crushing of single- and double-layer zig-zag trapezoidal corrugated core sandwiches was investigated experimentally and numerically at quasi-static and dynamic rates. The buckling stress of sandwiches increased when the rate increased from quasi-static to dynamic. The increased buckling stresses were ascribed to the micro-inertial effects, which altered the buckling mode of the core from three plastic hinges to higher number of plastic hinge formations. The initial buckling stress was numerically shown to be imperfection sensitive when the imperfection size was comparable with the buckling length. The numerical buckling stresses of zig-zag and straight corrugated cores were similar, while higher inertial effects were found in triangular corrugated core.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.