Abstract

As a carrier of perfluorooctane sulfonate, nano-plastics are ubiquitous and finally enriched in the sludge, which is widely used as a raw material for the production of bioenergy (hydrogen or methane) by anaerobic digestion. However, there are still many unknowns about their metabolic toxicity to functional microbes (e.g. hydrogen-producing thermophilic bacteria). Therefore, single and combined effects of amino polystyrene (NPS: 70 nm; 0.2 mg/L) and perfluorooctane sulfonate (PFOS: 0.1, 1 and 5 mg/L) on hydrogen-producing thermophilic bacteria were investigated after exposure for 7 days at 55 °C and pH = 5.7. Single NPS exhibited obvious interference to the metabolism of thermophilic bacteria, resulting in a 53.9% reduction in hydrogen production. However, the combined NPS + PFOS produced an antagonistic effect, leading to a 31.6% reduction in hydrogen production. Nonetheless, the single and combined exposure did not alter the type of hydrogen production (acetic acid-type hydrogen fermentation). Moreover, single NPS and combined NPS + PFOS not only induced the changes of the composition of extracellular polymers (EPSs) and π bond structure of the protein in EPSs, but also decreased the activity of hydrolase in EPSs and surface charge of EPSs. Compared to single NPS exposure, NPS + PFOS-exposed thermophilic bacteria was less permeable to a semi-membrane permeable dye and produced less reactive oxygen species, but were still significantly higher than control group. In short, the main mechanisms of single NPS and combined NPS + PFOS were both to increase cell permeability and to induce oxidative stress. The addition of PFOS alleviated the toxic effect of NPS, but did not change its mechanism of toxicity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call