Abstract
Generally, classification models have closed nature, and they are constrained by the number of classes in the training data. Hence, classifying "unknown" - OOD (out-of-distribution) - samples is challenging, especially in the so called "open set" problem. We propose and investigate different solutions - single and combined algorithms - to tackle this task, where we use and expand a K-classifier to be able to identify K+1 classes. They do not require any retraining or modification on the K-classifier architecture. We show their strengths when avoiding type I or type II errors is fundamental. We also present a mathematical representation for the task to estimate the K+1 classification accuracy, and an inequality that defines its boundaries. Additionally, we introduce a formula to calculate the exact K+1 classification accuracy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.