Abstract

We design a quantum algorithm for ground state preparation in the early fault tolerant regime. As a Monte Carlo style quantum algorithm, our method features a Lindbladian where the target state is stationary. The construction of this Lindbladian is algorithmic and should not be seen as a specific approximation to some weakly coupled system-bath dynamics in nature. Our algorithm can be implemented using just one ancilla qubit and efficiently simulated on a quantum computer. It can prepare the ground state even when the initial state has zero overlap with the ground state, bypassing the most significant limitation of methods like quantum phase estimation. As a variant, we also propose a discrete-time algorithm, demonstrating even better efficiency and providing a near-optimal simulation cost depending on the desired evolution time and precision. Numerical simulations using Ising and Hubbard models demonstrate the efficacy and applicability of our method. Published by the American Physical Society 2024

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.