Abstract

Transcription initiation by the sigma(54) RNA polymerase requires specialised activators and their associated nucleoside triphosphate hydrolysis. To explore the roles of sigma(54) in initiation we used random mutagenesis of rpoN and an in vivo activity screen to isolate functionally altered sigma(54) proteins. Five defective mutants, each with a different single amino acid substitution, were obtained. Three failed in transcription after forming a closed complex. One such mutant mapped to regulatory Region I of sigma(54), the other two to Region III. The Region I mutant allowed transcription independently of activator and showed reduced activator-dependent sigma(54) isomerisation. The two Region III mutants displayed altered behaviour in a sigma(54) isomerisation assay and one failed to stably bind early melted DNA as the holoenzyme; they may contribute to a communication pathway linking changes in sigma to open complex formation. Two further Region III mutants showed gross defects in overall DNA binding. For one, sufficient residual DNA binding activity remained to allow us to demonstrate that other activities were largely unaffected. Changes in DNA binding preferences and core polymerase-dependent properties were evident amongst the mutants.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.