Abstract

Based on conserved sites and homology modeling analysis, the residue Phe581 in the Klebsiella variicola SHN-1 pullulanase was selected as the potential thermostability-related site and its role on thermostability and activity was investigated by site-saturated mutagenesis. Compared with the wild-type pullulanase, the optimum temperature of the mutants including F581L, F581Q, F581R, F581T, F581V, and F581Y was increased from 53 to 56 °C, and correspondingly the half lives of these mutants at 55 °C were increased by 4.20, 3.70, 1.90, 7.16, 3.01, and 1.75 min, respectively. By modeling the structure of the pullulanase, formation of more hydrogen bonds by single-site substitution was supposed to be responsible for the improvement of thermostability. Of these mutants, furthermore, F581L and F581V exhibited higher values of V max and k cat/K m, compared with the wild-type enzyme. Therefore, the residue Phe581 was identified as an important site relevant to the activity and thermostability of the pullulanase of K. variicola, and by mutation at this single site, the mutated enzymes with enhanced thermostability and catalytic efficiency were achieved consequently.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.