Abstract

Pyranose 2-oxidases catalyze the oxidation of various pyranose sugars at the C2 position. However, their potential application for detecting sugars other than glucose in blood is hindered by relatively high activity towards glucose. In this study, in order to find a mutant enzyme with enhanced specificity for 1,5-anhydro-D-glucitol (1,5-AG), which is a biomarker for diabetes mellitus, we conducted site-directed mutagenesis of pyranose 2-oxidase from the basidiomycete Phanerochaete chrysosporium ( Pc POX). Considering the three-dimensional structure of the substrate-binding site of Pc POX and the structural difference between glucose and 1,5-AG, we selected alanine 551 of Pc POX as a target residue for mutation. Kinetic studies of the 19 mutants of Pc POX expressed as recombinant proteins in E. coli revealed that the ratio of k cat / K m for 1,5-AG to k cat / K m for glucose was three times higher for the A551L mutant than for wild-type Pc POX. Although the A551L mutant has lower specific activity towards each substrate than the wild-type enzyme, its increased specificity for 1,5-AG makes it a promising lead for the development of POX-based 1,5-AG detection systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.