Abstract

 
 
 
 Single-agent Finite Impulse Response Optimizer (SAFIRO) is a new estimation-based optimization algorithm which mimics the work procedure of the ultimate unbiased finite impulse response (UFIR) filter. In a real UFIR filter, the horizon length, N, plays an important role to obtain the optimal estimation. In SAFIRO, N represents the repetition number of estimation part that needs to be done in find-ing an optimal solution. On the other hand, Simulated Kalman Filter (SKF) is also an estimation- based optimization algorithm inspired by the estimation capability of Kalman filtering. In literature, substantial amount of works has been devoted to SKF, both in applied research and fundamental enhancements. Thus, in this paper, a performance comparison of both SAFIRO and SKF is presented. It is found that the SAFIRO outperforms the SKF significantly.
 
 
 
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.