Abstract

We consider the sine-Gordon equation on metric graphs with simple topologies and derive vertex boundary conditions from the fundamental conservation laws together with successive space-derivatives of sine-Gordon equation. We analytically obtain traveling-wave solutions in the form of standard sine-Gordon solitons such as kinks and antikinks for star and tree graphs. We show that for this case the sine-Gordon equation becomes completely integrable just as in case of a simple 1D chain. This simple analysis provides a cornerstone for the numerical solution of the general case, including a quantification of the vertex scattering. Applications of the obtained results to Josephson junction networks and DNA double helix are discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call