Abstract

Replication of alphaviruses in vertebrate cells strongly affects cell physiology and ultimately leads to development of a cytopathic effect (CPE) and cell death. Sindbis virus (SIN) replication causes major changes in cellular macromolecular synthesis, in which the strong downregulation of transcription of cellular mRNAs and rRNAs plays a critical role. SIN nonstructural protein nsP2 was previously proposed as one of the main regulators of virus-host cell interactions, because point mutations in the carboxy-terminal part of nsP2 could make SIN and other alphaviruses and replicons less cytopathic and capable of persisting in some vertebrate cell lines. These mutants were incapable of inhibiting transcription and downregulating a viral stress-induced cell response. In the present work, we demonstrate that (i) SIN nsP2 is critically involved in CPE development, not only during the replication of SIN-specific RNAs, but also when this protein is expressed alone from different expression cassettes; (ii) the cytotoxic effect of SIN nsP2 appears to be at least partially determined by its ability to cause transcriptional shutoff; (iii) these functions of SIN nsP2 are determined by the integrity of the carboxy-terminal peptide of this protein located outside its helicase and protease domains, rather than by its protease activity; and (iv) the cytotoxic activity of SIN nsP2 depends on the presence of this protein in a free form, and alterations in P123 processing abolish the ability of nsP2 to cause CPE.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.