Abstract
Chest tomosynthesis (CTS) is a newly developed imaging technique which provides pseudo-3D volume anatomical information of thorax from limited-angle projections and contains much less of superimposed anatomy than the chest X-ray radiography. One of the relatively common problems in CTS is the patient respiratory motion during image acquisition, which negatively impacts the detectability. In this work, we propose a sin-quadratic model to analyze the respiratory motion during CTS scan, which is a real time method where the respiratory signal is generated by extracting the motion of diaphragm from projection radiographs. According to the estimated respiratory signal, the CTS projections were then amplitude-based sorted into four to eight phases, and an iterative reconstruction strategy with total variation regularization was adopted to reconstruct the CTS images at each phase. Simulated digital XCAT phantom data and three sets of patient data were adopted for the experiments to validate the performance of the sin-quadratic model and its application in four dimensional (4D) CTS reconstruction. Results of the XCAT phantom simulation study show that the correlation coefficient between the extracted respiratory signal and the originally designed respiratory signal is 0.9964, which suggests that the proposed model could exactly extract the respiratory signal from CTS projections. The 4D CTS reconstructions of both the phantom data and the patient data show clear reduction of motion-induced blur.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.