Abstract

We sought to determine whether the attenuation of the hypercapnic cerebrovasodilation associated with inhibition of nitric oxide synthase (NOS) can be reversed by exogenous NO. Rats were anesthetized (halothane) and ventilated. Neocortical cerebral blood flow (CBF) was monitored by a laser-Doppler probe. The NOS inhibitor N omega-nitro-L-arginine methyl ester (L-NAME; 40 mg/kg iv) reduced resting CBF [-36 +/- 5% (SE); P < 0.01, analysis of variance] and attenuated the increase in CBF elicited by hypercapnia (partial pressure of CO2 = 50-60 mmHg) by 66% (P < 0.01). L-NAME reduced forebrain NOS catalytic activity by 64 +/- 3% (n = 10; P < 0.001). After L-NAME, intracarotid infusion of the NO donor 3-morpholinosydnonimine (SIN-1; n = 6) increased resting CBF and reestablished the CBF increase elicited by hypercapnia (P > 0.05 from before L-NAME). Similarly, infusion of the guanosine 3',5'-cyclic monophosphate (cGMP) analogue 8-bromo-cGMP (n = 6) reversed the L-NAME-induced attenuation of the hypercapnic cerebrovasodilation. The NO-independent vasodilator papaverine (n = 6) increased resting CBF but did not reverse the attenuation of the CO2 response. SIN-1 did not affect the attenuation of the CO2 response induced by indomethacin (n = 6). The observation that NO donors reverse the L-NAME-induced attenuation of the CO2 response suggests that a basal level of NO is required for the vasodilation to occur. The findings are consistent with the hypothesis that NO is not the final mediator of smooth muscle relaxation in hypercapnia.(ABSTRACT TRUNCATED AT 250 WORDS)

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.