Abstract

Currently, one of the main problems encountered in wound healing therapy is related to inefficient drug delivery. However, dissolving microneedles (DMNs) can be administered percutaneously to effectively deliver a drug to a deep wound area. Simvastatin (SIM) can promote wound healing, albeit its insolubility in water limits its application. Here, we designed a DMNs (SIM-NC@DMNs) drug delivery system loaded with SIM nanocrystals (SIM-NC) and evaluated its efficacy in wound healing. Based on our observations, the dissolution performance of insoluble SIM is significantly improved after the preparation of SIM-NC. For example, the saturation solubility of SIM-NC in deionized water and PBS increased by 150.57 times and 320.14 times, respectively. After the SIM-NC@DMNs are deeply inserted into the wound, the needle portion, which is composed of hyaluronic acid (HA), dissolves rapidly, and the SIM-NC loaded on the needle portion is efficiently released into the deep wound area for optimal therapeutic efficacy. The combination of NC and DMNs makes this system further effective for wound healing. Our cumulative work suggests that the newly developed SIM-NC@DMNs possess great potential in accelerating wound healing. By day 12 after treatment, the residual wound area in the Control group was 21.34 %, while the residual wound area in the SIM-NC@DMNs group was only 2.36 %. This result as well as provides certain evidence of its efficacy for wound healing therapy. The SIM-NC@DMNs drug delivery system may become an efficient treatment modality that promotes wound healing, with a promising potential in the field of wound healing research.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.