Abstract

The resistance of chronic myeloid leukaemia (CML) to tyrosine kinase inhibitors (TKIs) remains a significant clinical problem. Targeting alternative pathways, such as protein prenylation, is known to be effective in overcoming resistance. Simvastatin inhibits 3-hydroxy-3-methylglutaryl-CoA reductase (a key enzyme in isoprenoid-regulation), thereby inhibiting prenylation. We demonstrate that simvastatin alone effectively inhibits proliferation in a panel of TKI-resistant CML cell lines, regardless of mechanism of resistance. We further show that the combination of nilotinib and simvastatin synergistically kills CML cells via an increase in apoptosis and decrease in prosurvival proteins and cellular proliferation. Mechanistically, simvastatin inhibits protein prenylation as shown by increased levels of unprenylated Ras and rescue experiments with mevalonate resulted in abrogation of synergism. The combination also leads to an increase in the intracellular uptake and retention of radio-labelled nilotinib, which further enhances the inhibition of Bcr-Abl kinase activity. In primary CML samples, this combination inhibits clonogenicity in both imatinib-naive and resistant cells. Such combinatorial effects provide the basis for utilising these Food and Drug Administration-approved drugs as a potential clinical approach in overcoming resistance and improving CML treatment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.