Abstract

Simvastatin, a cholesterol lowering drug, has been shown to have positive effects on fracture healing and bone regeneration based on its dual effect; bone anabolic and anti-resorptive. In this study the focus has been on the anti-resorptive effect of the drug and its impact on the degradation of acidic calcium phosphate cement. The drug was added to the pre-mixed acidic cement in three different doses (0.1, 0.25 and 0.5 mg/g cement) and the release was measured. Furthermore the effect of the loaded cements on osteoclast differentiation and resorption was evaluated by TRAP activity, number of multinucleated cells, gene expression and calcium ion concentration in vitro using murine bone marrow macrophages. The simvastatin did not affect the cell proliferation while it clearly inhibited osteoclastic differentiation at all three doses as shown by TRAP staining, TRAP activity and gene expression. Consistent with these results, simvastatin also impaired resorption of cements by osteoclasts as indicated by reduced calcium ion concentrations. In conclusion, our findings suggest that simvastatin-doped pre-mixed acidic calcium phosphate cement inhibits the osteoclastic mediated resorption of the cement thus slowing down the degradation rate. In addition with simvastatin's bone anabolic effect it makes the cement-drug combination a promising bone graft material, especially useful for sites with compromised bone formation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.