Abstract

Objective: The objective of this study to investigate the effect of simvastatin on kidney fibrosis in mice with a 5/6 subtotal nephrectomy.Methods: Thirty adults (3 mo old) male Swiss mice were submitted to a 5/6 subtotal nephrectomy and studied after 14 d. Animals were divided into five groups: 5/6 subtotal nephrectomy (SN, n=6), sham operation (SH, n=6), simvastatin 5.2 mg/kg body weight (SIM-1, n=6), simvastatin 10.4 mg/kg body weight (SIM-2, n=6), and simvastatin 20.8 mg/kg body weight (SIM-3, n=6) groups. At sacrifice, kidneys were harvested for morphology (glomerulosclerosis (GS), tubular injury and interstitial fibrosis), immunostaining (α-smooth muscle actin (α-SMA)) and platelet-derived growth factor receptor beta (PDGF-Rβ) and reverse transcriptase-polymerase chain reaction (RT-PCR) (MCP-1, ICAM-1, nephrin, and podocin) analysis.Results: Glomerulosclerosis, tubular injury and interstitial fibrosis in the simvastatin group was significantly lower than SN group (p<0.05). Simvastatin significantly reduced α-SMA expression (3.61±1.06 vs 7.91±1.26, p<0.05, SIM-1 vs SN; 2.86±0.61 vs 7.91±1.26, p<0.05, SIM-2 vs SN; 1.71±0.50 vs 7.91±1.26, p<0.05, SIM-3 vs SN), MCP-1 was markedly expressed in the 5/6 subtotal nephrectomy kidneys and was reduced with simvastatin (1.4±0.64 vs 0.57±0.23, p<0.05, SN vs SIM-1; 1.4±0.64 vs 0.6±0.26, p<0.05, SN vs SIM-2; 1.4±0.64 vs 0.52±0.21, SN vs SIM-3, p<0.05). Simvastatin did not increase nephrin expression, but it increased podocin expression significantly in the SIM-3 group.Conclusion: Simvastatin significantly attenuated GS, tubular injury and interstitial fibrosis through the downregulation of myofibroblast expansion and inflammatory mediators in mice with a 5/6 subtotal nephrectomy.

Highlights

  • Chronic kidney disease (CKD) is a global health problem

  • Glomerulosclerosis, tubular injury and interstitial fibrosis in the simvastatin group was significantly lower than SN group (p

  • Simvastatin significantly reduced α-SMA expression (3.61±1.06 vs 7.91±1.26, p

Read more

Summary

Introduction

Chronic kidney disease (CKD) is a global health problem. There are various factors which may lead to CKD such as diabetes mellitus, hypertension, infection (glomerulonephritis, chronic pyelonephritis), and urinary tract obstruction [2, 3]. These diseases have the ability to cause an increase in intraglomerular pressure, barrier filtration permeability, endothelial cell dysfunction, mesangial, podocyte, and tubular cell activation, extracellular matrix synthesis, proteinuria/albuminuria and decrease glomerular filtration rate (GFR)[2]. Pharmacological therapy for CKD is primarily aims to address the underlying causes and prevent the progression of the disease. Statins are the pharmacologic intervention of choice for dyslipidemia, which is the greatest risk factor for cardiovascular (CV) events and the progression of kidney disease [4]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call