Abstract

Newly diagnosed pancreatic cancer increases year by year, while the prognosis of pancreatic cancer has not been very good. Statin drugs were found to have protective effects against a variety of cancers, but their association with pancreatic cancer remains to be clarified. This study used different pancreatic cancer cell lines and in different animal models to confirm the relationship between simvastatin and pancreatic cancer. Flow cytometry and luciferase-based bioluminescent images were used to investigate the cell cycle and tumor growth changes under simvastatin treatment. Simvastatin decreased the MIA PaCa-2 cells, PANC-1 cells, and BxPC-3 cell viability significantly and may arrest the cell cycle in the G0 phase. During in vivo study, subcutaneously implanted simvastatin pre-treated pancreatic cancer cells and intraperitoneally treated simvastatin continuously demonstrated a slower tumor growth rate and decreased the tumor/body weight ratio significantly. In intravenous implant models, implanted simvastatin-pre-treated BxPC-3 cells and cells treated along with simvastatin significantly decreased the tumor growth curve. Implanting the simvastatin-pre-treated pancreatic cells in the subcutaneous model showed better growth inhibition than the intravenous model. These results suggest simvastatin treatment may relate to different signaling pathways in local growth and metastasis. Pancreatic cancer cells presented different growth patterns in different animal-induced models, which could be important for clinical reference when it comes to the relationship of long-term statin use and pancreatic cancer.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call