Abstract

The efficient manipulation, sorting, and measurement of optical modes and single-photon states is fundamental to classical and quantum science. Here, we realize simultaneous and efficient sorting of nonorthogonal, overlapping states of light, encoded in the transverse spatial degree of freedom. We use a specifically designed multiplane light converter to sort states encoded in dimensions ranging from d=3 to d=7. Through the use of an auxiliary output mode, the multiplane light converter simultaneously performs the unitary operation required for unambiguous discrimination and the basis change for the outcomes to be spatially separated. Our results lay the groundwork for optimal image identification and classification via optical networks, with potential applications ranging from self-driving cars to quantum communication systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call