Abstract
Recently, several major pulsar timing array (PTA) collaborations have assembled strong evidence for the existence of a gravitational-wave background at frequencies around the nanohertz regime. Assuming that the PTA signal is attributed to scalar-induced gravitational waves, we jointly employ the PTA data from the NANOGrav 15-year data set, PPTA DR3, and EPTA DR2 to probe the conditions of the early Universe. Specifically, we explore the equation of state parameter (w), the reheating temperature (T rh), and the sound speed (cs ), finding w = 0.59+0.36 -0.40 (median + 90% credible interval), and T rh ≲ 0.2 GeV at the 95% credible interval for a lognormal power spectrum of the curvature perturbation. Furthermore, we compute Bayes factors to compare different models against the power-law spectrum model, effectively excluding the pressure-less fluid domination model. Our study underscores the significance of scalar-induced gravitational waves as a powerful tool to explore the nature of the early Universe.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.