Abstract
Traditionally, phase I clinical trial designs are based upon one predefined course of treatment while varying among patients the dose given at each administration. In actual medical practice, patients receive a schedule comprised of several courses of treatment, and some patients may receive one or more dose reductions or delays during treatment. Consequently, the overall risk of toxicity for each patient is a function of both actual schedule of treatment and the differing doses used at each adminstration. Our goal is to provide a practical phase I clinical trial design that more accurately reflects actual medical practice by accounting for both dose per administration and schedule. We propose an outcome-adaptive Bayesian design that simultaneously optimizes both dose and schedule in terms of the overall risk of toxicity, based on time-to-toxicity outcomes. We use computer simulation as a tool to calibrate design parameters. We describe a phase I trial in allogeneic bone marrow transplantation that was designed and is currently being conducted using our new method. Our computer simulations demonstrate that our method outperforms any method that searches for an optimal dose but does not allow schedule to vary, both in terms of the probability of identifying optimal (dose, schedule) combinations, and the numbers of patients assigned to those combinations in the trial. Our design requires greater sample sizes than those seen in traditional phase I studies due to the larger number of treatment combinations examined. Our design also assumes that the effects of multiple administrations are independent of each other and that the hazard of toxicity is the same for all administrations. Our design is the first for phase I clinical trials that is sufficiently flexible and practical to truly reflect clinical practice by varying both dose and the timing and number of administrations given to each patient.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.