Abstract

The origin of in vitro amyloid fibril polymorphs is debated, in part, because few techniques can simultaneously monitor the formation kinetics of multiple amyloid polymorphs. Using a cross-peak specific polarization scheme, ⟨0°,0°,60°,-60°⟩, we resolve 22 previously unseen cross peaks in the 2D IR spectra of amyloid fibrils formed by the human islet amyloid polypeptide (hIAPP). Those cross peaks include a subset assigned to a second fibril polymorph, which forms on a slower time scale. We simulated the data with three different kinetic models for polymorph formation. Only a model based on secondary nucleation reproduces the cross peak kinetics. These experiments are evidence that fibrils formed by secondary nucleation have a different polymorphic structure than the parent fibrils and illustrate the enhanced structural resolution of this new cross peak specific polarization scheme.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call