Abstract

Cover inequalities are commonly used cutting planes for the 0–1 knapsack problem. This paper describes a linear-time algorithm (assuming the knapsack is sorted) to simultaneously lift a set of variables into a cover inequality. Conditions for this process to result in valid and facet-defining inequalities are presented. In many instances, the resulting simultaneously lifted cover inequality cannot be obtained by sequentially lifting over any cover inequality. Some computational results demonstrate that simultaneously lifted cover inequalities are plentiful, easy to find and can be computationally beneficial.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.