Abstract

In this paper, we present a visual servoing method based on a learned mapping between feature space and control space. Using a suitable recognition algorithm, we present and evaluate a complete method that simultaneously learns the appearance and control of a low-cost robotic arm. The recognition part is trained using an action precedes perception approach. The novelty of this paper, apart from the visual servoing method per se, is the combination of visual servoing with gripper recognition. We show that we can achieve high precision positioning without knowing in advance what the robotic arm looks like or how it is controlled.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.