Abstract

BackgroundSrc, an oncoprotein that drives progression of head and neck squamous cell carcinoma (HNSCC), is commonly hyperactivated in this disease. Unfortunately, the clinical benefit of targeting Src is significantly dampened in HNSCC patients, because the cytotoxic effects of anti-Src therapy and tumor resistance to it are less predictable. Thus, understanding the mechanism of tumor resistance to Src inhibition and seeking a way to overcome it are warranted.MethodsDual drug-loaded nanoparticles (NPs) were developed to co-deliver Src inhibitor saracatinib (AZD0530) and AKT inhibitor capivasertib (AZD5363) into the same population of tumor cells. An orthotopic tongue tumor model was generated to evaluate the in vivo therapeutic effects. Cell growth was determined by CellTiter-Glo® Luminescent Cell Viability Kit, colony formation, and 3D culture, and tumor growth was determined by bioluminescence and tumor size. The molecular changes induced by the treatments were assessed by Western blotting and immunohistochemistry.ResultsCapivasertib inactivated the AKT-S6 signaling and re-sensitized saracatinib-resistant HNSCC cells to saracatinib. Combination of capivasertib with saracatinib suppressed HNSCC growth more efficiently than either drug alone. Cathepsin B-sensitive NPs for co-delivering saracatinib and capivasertib significantly improved the efficacy of tumor repression without increasing side effects, which were due to highly specific tumor-targeting drug delivery system and synergistic anticancer effects by co-inactivation of AKT and Src in HNSCC cells.ConclusionsAddition of AKT blockade improves anti-HNSCC efficacy of anti-Src therapy, and co-delivery of capivasertib and saracatinib by tumor-targeting NPs has the potential to achieve better treatment outcomes than the free drug combination.

Highlights

  • Src, an oncoprotein that drives progression of head and neck squamous cell carcinoma (HNSCC), is commonly hyperactivated in this disease

  • HNSCC cells exhibit differential sensitivity to saracatinib We first evaluated the efficacy of Src inhibitor saracatinib in several types of cancer cells

  • Eight cell lines derived from prostate cancer (PC3 and DU145), breast cancer (MDA-MB-231 and T47D), lung cancer (H1299 and H1611), and HNSCC (HN8 and HN12), were treated with two doses of the Src inhibitor saracatinib for 72 h

Read more

Summary

Introduction

An oncoprotein that drives progression of head and neck squamous cell carcinoma (HNSCC), is commonly hyperactivated in this disease. Anti-Src agents dasatinib and saracatinib (AZD0530) are currently in clinical development for patients with solid tumors. These Src inhibitors exhibit limited activities against HNSCC in clinical trials despite consistent Src inhibition [8,9,10]. These treatment failures may be attributed to cancer heterogeneity and molecular complexity, implying that the use of a single therapeutic agent is not sufficient to halt cancer progression. There is a need for studies to develop combined therapy that overcomes the limitations of monotherapy

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call