Abstract

Aromatic thermoset materials have shown great potential applications in various fields owing to their excellent mechanical strengths. However, their poor ductility is still hinders their large-scale applications. In this study, a new class of aromatic thermosets consisting of two types of crosslinks was successfully developed by incorporating the special group imidazole into a type of crosslinked thermoset. One crosslink is constituted of reversible multiple noncovalent interactions containing “face-face” π–π stacking, “point-point” hydrogen bonds, and ion-pair electrostatic interactions, whereas the other is composed of permanent covalent bonds. Most importantly, the synergetic interplay among these reversible multiple noncovalent interactions enables them to evade the restrictions from the aromatic polymer skeletons to proceed with their dynamic dissociating-rebuilding processes, which can timely and effectively dissipate the internal stress. Finally, owing to the coefficient of these two types of crosslinks, a significantly enhanced ductility was successfully obtained on these aromatic thermosets and their tensile strengths were also improved. Such thermosets having simultaneously enhanced strengths and ductility are predicted to be eventually used in a wide range of applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call