Abstract

ABSTRACTPolymer processing methods generally play a crucial role in determining the development of microstructure in the fabricated product. In this study, isotactic polypropylene (iPP) melt containing 0.05 wt % β‐nucleating agent (β‐NA) was extruded via a melt flow rate indicator. The molten extrudate was stretched into a fiber upon various take‐up velocities (TVs). The microstructures of the fiber were investigated by differential scanning calorimeter, two‐dimensional wide‐angle X‐ray diffraction, and small‐angle X‐ray scattering. Also, its tensile properties (including tensile strength, modulus, elongation at break, and toughness) were measured by tensile test. Interestingly, the tensile strength (135.0 MPa) of a melt‐spun β‐nucleated iPP fiber fabricated at 400 cm/min was enhanced by 115.2%, compared with that (62.7 MPa) prepared at 100 cm/min, with a considerable increment in toughness (from 661 to 853 MJ/m3). The enhancement mechanism for tensile properties was discussed based on the microstructures. This work offers a simple approach to prepare β‐nucleated iPP fibers with excellent strength and toughness. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016, 133, 43454.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call