Abstract
AbstractThis work aims to address the heat accumulation issue in electronic components during high‐frequency operation through the preparation of novel thermally conductive composites. First, polydopamine (PDA) and in‐situ growth of silver (Ag) nanoparticles are applied for the surface modification of graphene oxide (GO) and carbon nanotube (CNT) to prepare pGO@Ag and pCNT@Ag hybrid filler, respectively. Then, nitrile butadiene rubber (NBR) is chosen as the polymeric matrix and simultaneously incorporated with both pGO@Ag and pCNT@Ag to prepare polymeric composites with excellent thermal conductivity (TC) and dielectric constant (ɛr). Due to the construction of 3D heat conduction networks by utilizing 2D pGO@Ag and 1D pCNT@Ag, the fabricated NBR composites achieved the maximum TC of 1.0112 W/(mK), which is 636% higher than that of neat NBR (0.1373 W (mK)−1). At the filler loading of 9 vol%, the TC of pGO@Ag/pCNT@Ag/NBR composite is 152% that of GO/CNT/NBR composite (0.6660 W (mK)−1). Moreover, due to electron polarization effect of GO and CNT and micro‐capacitor effect of Ag nanoparticles, a large ɛr of 147.12 is attained at 10 Hz for NBR composites. Overall, the development of dielectric polymer materials with high TC is beneficial for enhancing the service life and safety stability of the electronic components.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.