Abstract
Constructing visible-light-driven photocatalysts with outstanding performances for selective alcohol oxidation has become a research frontier in the field of heterogeneous photocatalysis. Herein, simultaneously generating Bi quantum dot and oxygen vacancy on Bi2MoO6 nanosheets, facilely achieved through a hydrothermal combining post-reduction route, has been developed to catalyze selective alcohol oxidation in D.I·H2O medium via visible-light-driven heterogeneous photocatalysis, actually presenting the remarkably boosted photoactivity and excellent reusability. Experimental results reveal that the remarkably boosted photoactivity can be intrinsically credited to the synergetic effect of oxygen vacancy and Bi quantum dot, strikingly leading to the narrowed band gap, the improved visible-light absorbance as well as the escalated photocharge separation capability. Impressively, its excellent reusability can be mainly correlated with Bi quantum dot strongly interacting with robust Bi2MoO6 nanosheet that not only inhibits the structural collapse of Bi2MoO6 nanosheet but also the leaching of Bi quantum dot, demonstrating its promising potential in future sustainable organic synthesis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.