Abstract

With rapid developments in the consumer electronics market, electrostatic capacitors need to store as much energy as possible within a rather restricted space. In this work, nanocomposite films combining two-dimensional core-shell NaNbO3@Al2O3 platelets (2D NN@AO Ps) and poly(vinylidene-fluoride hexafluoropropylene) (P(VDF-HFP)), featuring excellent energy storage capability, high efficiency, and ultrafast discharge performance, are designed and fabricated. Both the experimental results and finite element simulations confirm the superiority of these 2D NN@AO Ps nanocomposite films in improving the breakdown strength (Eb) and energy storage capability. In particular, the introduction of 3 vol% 2D NN@AO Ps results in much enhanced discharge energy density of 14.59 J cm-3 and outstanding discharge efficiency of 70.1% in NN@AO Ps/P(VDF-HFP) nanocomposite films, which is much greater than that of pure P(VDF-HFP) (7.74 J cm-3). The corresponding nanocomposite films exhibit excellent reliability in energy storage performance under consecutive cycling. Therefore, this research could reveal a new chapter in the study and application of polymer nanocomposites in energy-storage dielectric capacitors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.