Abstract
The study about simultaneously enhancing the resistive switching level and ambient-air-stability of perovskite-based memorizers will promote its commercialization. Here, a new 3D perovskite (TAZ-H)PbBr3 (TAZ-H+ = protonated thiazole) has been fabricated as FTO/(TAZ-H)PbBr3/Ag device, which only exhibits binary memory performance with the high tolerant temperature of 170 °C. After encapsulating by polyvinylpyrrolidone (PVP), the (TAZ-H)PbBr3@PVP composite-based device can demonstrate ternary resistive switching behavior with considerable ON2/ON1/OFF ratio (105.9: 103.9:1) and high ternary yield (68 %). Specially, this device presents good ambient-air stability at RH 80 % and thermal tolerance of 100 °C. The binary resistive switching mechanism can be ascribed to the halogen ion migration induced by bromine defects in the (PbBr3)nn– framework. But the ternary resistive switching phenomenon in the (TAZ-H)PbBr3@PVP-based device could be depicted as the carrier transport from filled traps of PVP to (PbBr3)nn– framework (ON1 state) and then carriers flowing in the re-arranged (TAZ-H)nn+ chain in 3D channels (ON2 state). The PVP treatment can not only modify the grain boundary defects, but also facilitate the transport of injected carriers to the perovskite films via Pb-O coordinated bonds and inhibition of order-disorder transformation. This facial strategy for implementing ternary perovskite-based memorizers with good ambient-air-stability is quite meaningful for high-density memory in harsh environments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Journal of Colloid and Interface Science
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.