Abstract
We investigate the problem of simultaneously dominating all spanning trees of a given graph. We prove that on 2-connected graphs, a subset of the vertices dominates all spanning trees of the graph if and only if it is a vertex cover. Using this fact we present an exact algorithm that finds a simultaneous dominating set of minimum size using an oracle for finding a minimum vertex cover. The algorithm can be implemented to run in polynomial time on several graph classes, such as bipartite or chordal graphs. We prove that there is no polynomial time algorithm that finds a minimum simultaneous dominating set on perfect graphs unless P=NP. Finally, we provide a 2-approximation algorithm for finding a minimum simultaneous dominating set.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Electronic Journal of Graph Theory and Applications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.