Abstract
Oxidative stress is a well-known phenomenon arising from physiological and nonphysiological factors, defined by the balance between antioxidants and pro-oxidants. While the presence and uptake of antioxidants are crucial, the pro-oxidant effects have not received sufficient research attention. Several methods for assessing pro-oxidant activity, utilizing various mechanisms, have been published. In this paper, we introduce a methodology for the simultaneous determination of antioxidant and pro-oxidant activity on a single microplate in situ, assuming that the FRAP method can measure both antioxidant and pro-oxidant activity due to the generation of pro-oxidant Fe2+ ions in the Fenton reaction. Systematic research using this rapid screening method may help to distinguish between compounds with dominant antioxidant efficacy and those with dominant pro-oxidant effects. Our preliminary study has revealed a dominant pro-oxidant effect for compounds with a higher number of oxygen heteroatoms, especially sp2 hybridized compounds (such as those containing keto groups), such as flavonoids and plant extracts rich in these structural types. Conversely, catechins, carotenoids, and surprisingly, extracts from birch leaves and chestnut leaves have demonstrated dominant antioxidant activity over pro-oxidant. These initial findings have sparked significant interest in the systematic evaluation of a more extensive collection of compounds and plant extracts using the developed method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.