Abstract

Tungsten–nitrogen (W–N) codoping has been known to enhance the photocatalytic activity of anatase TiO2 nanoparticles by utilizing visible light. The doping effects are, however, largely dependent on calcination or annealing conditions, and thus, the massive production of quality-controlled photocatalysts still remains a challenge. Using density functional theory (DFT) thermodynamics and time-dependent DFT computations (TDDFT), we investigate the atomic structures of N doping and W–N codoping in anatase TiO2, as well as the effect of the thermal processing conditions. We find that W and N dopants predominantly constitute two complex structures: an N interstitial site near a Ti vacancy in the triple charge state ((VTi-Ni)3–) and the simultaneous substitutions of Ti by W and the nearest O by N ((WTi-NO)+). The latter case induces highly localized shallow in-gap levels near the conduction band minimum (CBM) and the valence band maximum (VBM), whereas the (VTi-Ni)3– defect complex yielded deep levels (1.9 eV a...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call