Abstract

High-temperature piezoelectric materials are pivotal to technology applications fields including defense, aerospace, nuclear energy, and oil well logging. However, the acquisition of excellent piezoelectric properties is usually at the cost of temperature stability (reduced Curie temperature and increased high-temperature dielectric loss), which hinders the application of piezoelectric ceramics in harsh environments. In this study, we investigated the effect of Nb5+ donor and Mn2+/3+ acceptor doping on the dielectric and piezoelectric properties of BiScO3-PbTiO3 (BS-PT)-based ceramics. In contrast to the acceptor doping, it was found that the donor doping not only enhances the piezoelectric properties but also effectively suppresses the dielectric loss at a high temperature by reducing the oxygen vacancy concentration. Eventually, we simultaneously attained an excellent piezoelectric performance (d33 is 553 pC/N at room temperature and 1528 pC/N at 400 °C, respectively) and a low dielectric loss (less than 2% in the temperature range of 150-300 °C) but still with a high Curie temperature (TC ∼ 445 °C) in Nb5+-doped BS-PT ceramics. Furthermore, different in situ measurements were used to demonstrate the remarkable temperature stability up to a high depolarization temperature of ∼400 °C. This work represents significant progress in high-temperature piezoelectric materials and provides a guideline for future efforts on enhancing the piezoelectricity and suppressing the dielectric loss at high temperature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.