Abstract

In this paper, we consider the simultaneous wireless information and power transfer for the spectrum sharing (SS) in cognitive radio (CR) systems with a multi-antenna energy harvesting (EH) primary receiver (PR). The PR uses the antenna switching (AS) technique that assigns a subset of the PR's antennas to harvest the energy from the radio frequency (RF) signals sent by the secondary transmitter (ST), and assigns the rest of the PR's antennas to decode the information data. In this context, the primary network allows the secondary network to use the spectrum as long as the interference induced by the secondary transmitter (ST)'s signals is beneficial for the energy harvesting process at the PR side. The objective of this work is to show that the spectrum sharing is beneficial for both the SR and PR sides and leads to a win-win situation. To illustrate the incentive of the spectrum sharing cognitive system, we evaluate the mutual outage probability (MOP) introduced in [1] which declares an outage event if the PR or the secondary receiver (SR) is in an outage. Through the simulation results, we show that the performance of our system in terms of the MOP is always better than the performance of the system in the absence of ST and improves as the ST-PR interference increases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call