Abstract
We experimentally demonstrate four-wave-mixing (FWM)-based continuous wavelength conversion of optical differential-phase-shift-keyed (DPSK) signals with large wavelength conversion ranges as well as simultaneous wavelength conversion of dual-wavelength channels with mixed modulation formats in 1.1-cm-long dispersion-engineered silicon waveguides. We first validate up to 100-nm wavelength conversion range for 10-Gb/s DPSK signals, showcasing the capability to perform phase-preserving operations at high bit rates in chip-scale devices over wide conversion ranges. We further validate the wavelength conversion of dual-wavelength channels modulated with 10-Gb/s packetized phase-shift-keyed (PSK) and amplitude-shift-keyed (ASK) signals; demonstrate simultaneous operation on multiple channels with mixed formats in chip-scale devices. For both configurations, we measure the spectral and temporal responses and evaluate the performances using bit-error-rate (BER) measurements.
Highlights
As data rates in broadband optical networks continues to grow, all-optical signal processing technologies are expected to become essential for energy efficient optical switch fabrics since signal manipulation based on optical-electrical-optical (OEO) interfaces will become too complex and power hungry at high multichannel data rates
We experimentally demonstrate four-wave-mixing (FWM)-based continuous wavelength conversion of optical differential-phase-shift-keyed (DPSK) signals with large wavelength conversion ranges as well as simultaneous wavelength conversion of dual-wavelength channels with mixed modulation formats in 1.1-cm-long dispersion-engineered silicon waveguides
These demonstrations validate the suitability of the CMOS-compatible silicon-photonic platform for flexible lowcost all-optical processing systems and highlight the ability to process multiple data formats on a single platform
Summary
As data rates in broadband optical networks continues to grow, all-optical signal processing technologies are expected to become essential for energy efficient optical switch fabrics since signal manipulation based on optical-electrical-optical (OEO) interfaces will become too complex and power hungry at high multichannel data rates. Optical parametric processing platforms enable power efficient and ultra-fast signal processing functionalities for wavelength converters [1,2,3,4,5,6,7,8,9,10], wavelength multicasters [11,12], tunable delays [13], regenerators [14], amplifiers [15], as well as temporal demultiplexers [16,17] Among these functionalities, wavelength converters are critical building blocks for wavelength-divisionmultiplexed (WDM) systems as they can help avoid wavelength contention problems and increase overall system flexibility.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.