Abstract

A variety of physical phenomena associated with nanoscale electron transport often results in non-trivial spatial voltage and current patterns, particularly in nonlocal transport regimes. While numerous techniques have been devised to image electron flows, the need remains for a nanoscale probe capable of simultaneously imaging current and voltage distributions with high sensitivity and minimal invasiveness, in a magnetic field, across a broad range of temperatures and beneath an insulating surface. Here we present a technique for spatially mapping electron flows based on a nanotube single-electron transistor, which achieves high sensitivity for both voltage and current imaging. In a series of experiments using high-mobility graphene devices, we demonstrate the ability of our technique to visualize local aspects of intrinsically nonlocal transport, as in ballistic flows, which are not easily resolvable via existing methods. This technique should aid in understanding the physics of two-dimensional electronic devices and enable new classes of experiments that image electron flow through buried nanostructures in the quantum and interaction-dominated regimes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.