Abstract

Localized surface plasmon resonance (LSPR) as a unique property of metal nanoparticles (NPs) has been widely applied to enhance the performance of optoelectronic devices. However, limited by the specific resonance frequency of plasmonic NPs, the LSPR of NPs can only improve the photoresponse performance of photodetectors at specific wavelength. In this work, a simple strategy is proposed to simultaneously improve the performance of the p-MoS2/n-ZnO heterostructure photodetector in visible and ultraviolet (UV) light regions by modifying Au NPs. The Ilight/Idark ratio of the photodetector is considerably increased after the functionalization with plasmonic Au NPs under visible and UV light illumination due to the direct resonant coupling of LSPR. In particular, the photocurrent of the photodetector increases 14.8 times after Au NPs modification under 532 nm illumination, giving rise to an obvious increase in responsivity, external quantum efficiency and specific detectivity. Moreover, the modification of Au NPs facilitates the rapid separation of electrons and holes due to the generation of surface depletion regions located at Au/MoS2 and Au/ZnO interfaces. Consequently, the photoresponse speed is also drastically improved after Au NPs decoration in both visible and ultraviolet light regions. The strategy of direct resonant coupling of Au NPs LSPR with two photosensitive materials proposed in this work will provide a new avenue for optimizing the performance of optoelectronic devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call