Abstract
After glucose, xylose is the most abundant sugar in lignocellulosic carbon sources. However, wild-type Escherichia coli is unable to simultaneously utilize both sugars due to carbon catabolite repression (CCR). In this paper, we describe GX50, an engineered strain capable of utilizing glucose and xylose simultaneously. This strain was obtained by evolving a mutant from which araC has been deleted, and in which genes required for pentose metabolism are constitutively expressed. The strain acquired four additional mutations during adaptive evolution, including intergenic mutations in the 5′-flanking region of xylA and pyrE, and missense mutations in araE (S91I) and ybjG (D99G). In contrast to wild type E. coli, GX50 rapidly converts xylose to xylitol even if glucose is available. Notably, the strain grows well when cultured on glucose, unlike some well-known CCR-insensitive mutants defective in the glucose phosphotransferase system. Our work will advance efforts to design a metabolically efficient platform strain for potential use in producing chemicals from lignocellulose.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.