Abstract

Pseudomonas putida,a robust candidate for lignocellulosicbiomass-based biorefineries, encounters challenges in metabolizing xylose. In this study, Weimberg pathway was introduced intoP. putidaEM42 under a xylose-inducible promoter, resulting in slow cell growth (0.05 h−1) on xylose.Through adaptive laboratory evolution, an evolved strain exhibited highly enhanced growth on xylose (0.36 h−1), comparable to that on glucose (0.39 h−1). Whole genome sequencing identified four mutations, with two key mutations located inPP3380andPP2219. Reverse-engineered strain 8EM42_Xyl, harboring these two mutations, showed enhanced growth on xylose but co-utilizing glucose and xylose at a rate of 0.3 g/L/h. Furthermore, 8EM42_Xyl was employed for 3-hydroxypropionic acid (3HP) production from glucose and xylose by expressing malonyl-CoA reductase and acetyl-CoA carboxylase, yielding 29 g/L in fed-batch fermentation. Moreover, the engineered strain exhibited promising performance in 3HP production from empty palm fruit bunch hydrolysate, demonstrating its potential as a promising cell factory forbiorefineries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.