Abstract

In processes such as invasion percolation and certain models of continuum percolation, in which a possibly random labelf(b) is attached to each bondb of a possibly random graph, percolation models for various values of a parameterr are naturally coupled: one can define a bondb to be occupied at levelr iff(b)≦r. If the labeled graph is stationary, then under the mild additional assumption of positive finite energy, a result of Gandolfi, Keane, and Newman ensures that, in lattice models, for each fixedr at which percolation occurs, the infinite cluster is unique a.s. Analogous results exist for certain continuum models. A unifying framework is given for such fixed-r results, and it is shown that if the site density is finite and the labeled graph has positive finite energy, then with probability one, uniqueness holds simultaneously for all values ofr. An example is given to show that when the site density is infinite, positive finite energy does not ensure uniqueness, even for fixedr. In addition, with finite site density but without positive finite energy, one can have fixed-r uniqueness a.s. for eachr, yet not have simultaneous uniqueness.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.