Abstract

An environment friendly, high yielding, promising one-pot protocol for the click reaction of N-propargyl-3-formylindole 2(a-b), chloroacetic acid/ester 3(a-b) and sodium azide, leading to the formation of 3-formyl-indole clubbed 1,4-disubstituted-1,2,3-triazole derivatives 4(a-b), 5(a-b) and 6(a-f) aided by CuI catalyst accomplished under acceleration of simultaneous ultrasound and microwave irradiation in a very short reaction time has been described. Further, acid derivative 4(a-b) is subjected to acid-amine coupling reaction with secondary amine (p-t) in the presence of HATU to afford 6(p-t) and 7(p-t). The perspective of this protocol is to get rid of the hectic preparation and handling of organic azide which are generated in situ. Consequently, this protocol blossoms the click process by making it environment benign, user-friendly, safe and clean technique. All the synthesized compounds have been preliminarily screen for their in vitro antimicrobial activity against a panel of pathogenic strains. The majority of compounds possess noticeably inhibitory action against E. Coli, S. Typhi, P. Aeruginosa, C. tetani, S. aureus and B. subtillis. Among all compounds, 6p and 7q exhibit excellent inhibitory action against E.Coli and P. Aeruginosa strain, respectively, as compared to standard drug. One compound 5b shows remarkable potency against fungal strain. Molecular docking study was carried out to understand binding of compound with protein. In silico ADME prediction was carried out to check physicochemical properties of synthesized compound.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.