Abstract

The intrinsic fluorescence of bacterial samples has a proven potential for label-free bacterial characterization, monitoring bacterial metabolic functions, and as a mechanism for tracking the transport of relevant components through vesicles. The reduced scattering and axial confinement of the excitation offered by multiphoton imaging can be used to overcome some of the limitations of single-photon excitation (e.g., scattering and out-of-plane photobleaching) to the imaging of bacterial communities. In this work, we demonstrate in vivo multi-photon microscopy imaging of Streptomyces bacterial communities, based on the excitation of blue endogenous fluorophores, using an ultrafast Yb-fiber laser amplifier. Its parameters, such as the pulse energy, duration, wavelength, and repetition rate, enable in vivo multicolor imaging with a single source through the simultaneous two- and three-photon excitation of different fluorophores. Three-photon excitation at 1040 nm allows fluorophores with blue and green emission spectra to be addressed (and their corresponding ultraviolet and blue single-photon excitation wavelengths, respectively), and two-photon excitation at the same wavelength allows fluorophores with yellow, orange, or red emission spectra to be addressed (and their corresponding green, yellow, and orange single-photon excitation wavelengths). We demonstrate that three-photon excitation allows imaging over a depth range of more than 6 effective attenuation lengths to take place, corresponding to an 800 micrometer depth of imaging, in samples with a high density of fluorescent structures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.