Abstract

The overall assessment of tunnel lining, including shapes, categories, and depths of tunnel internal defects as well as the thickness of tunnel linings is vital to the safe operation of tunnels. We proposed a method comprising a multi-task deep neural network and curve fitting post-processing operation for simultaneously identifying the shapes, categories, and depths of tunnel defects as well as lining thicknesses from ground penetrating radar (GPR) images. The multi-task deep neural network, denoted as M-YOLACT, was designed to identify defects, lining profiles, and hyperbola shapes simultaneously. We introduced a curve-fitting post-processing operation to calculate the dielectric constant automatically based on the hyperbola shapes and evaluated the defect depths and lining thicknesses. The method was validated by numerical simulations, sandbox, and field tests. The method effectively identified the shapes and classes of tunnel defects as well as the thickness profiles from GPR B-Scan images.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.