Abstract
AbstractWe show how to simultaneously reduce a pair of symmetric matrices to tridiagonal form by congruence transformations. No assumptions are made on the non‐singularity or definiteness of the two matrices. The reduction follows a strategy similar to the one used for the tridiagonalization of a single symmetric matrix via Householder reflectors. Two algorithms are proposed, one using non‐orthogonal rank‐one modifications of the identity matrix and the other, more costly but more stable, using a combination of Householder reflectors and non‐orthogonal rank‐one modifications of the identity matrix with minimal condition numbers. Each of these tridiagonalization processes requires O(n3) arithmetic operations and respects the symmetry of the problem. We illustrate and compare the two algorithms with some numerical experiments. Copyright © 2003 John Wiley & Sons, Ltd.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal for Numerical Methods in Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.